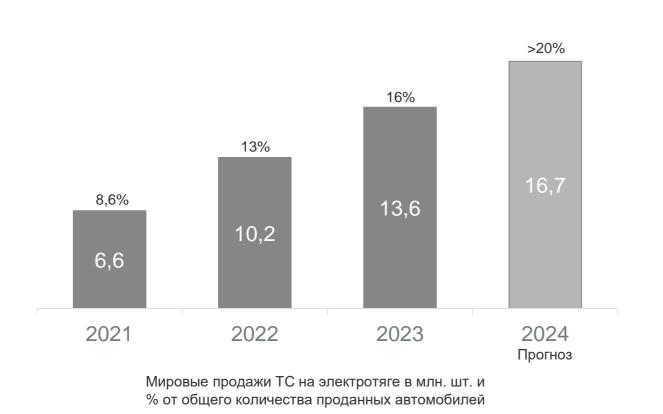
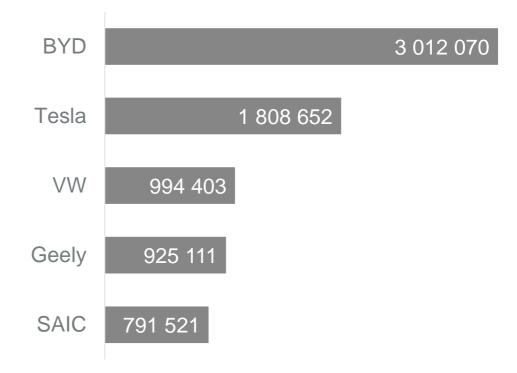


Современные тенденции развития батарейных систем автомобильного транспорта и компетенции ФГУП НАМИ в разработке высоковольтных батарей




Современные тенденции развития батарейных систем автомобильного транспорта

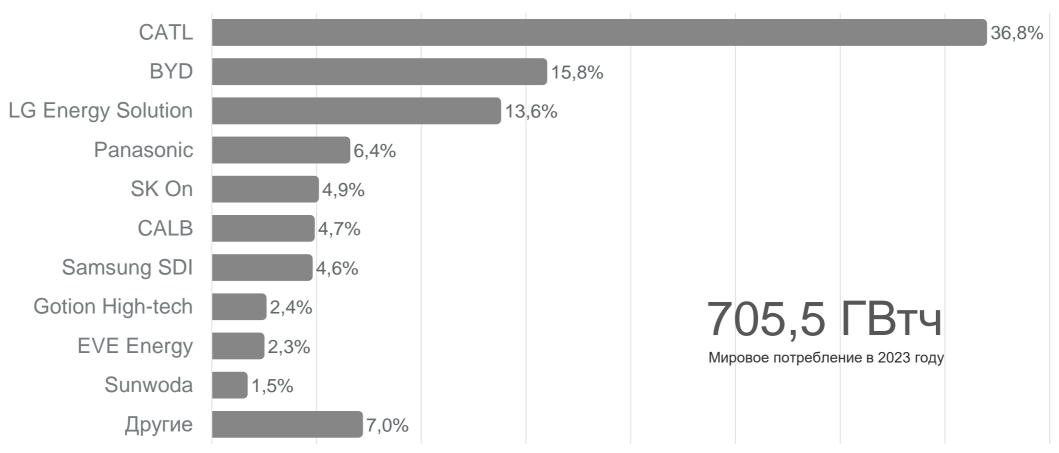
Мировой рынок транспортных средств на электротяге

Продажи транспортных средств на электротяге

Продажи пяти основных производителей ТС на электротяге за 2023 год в шт.

Источники: Reuters, Rho Motion, Evvolume.com

Первичная регистрация ТС с электрическим приводом в РФ


Транспортные средства по типам топлива	СЕГМЕНТ	2019	2020	2021	2022	2023
	Автобусы (BUS)	-	-	345	159	475
	Грузовые (HCV)	-	-	4	3	12
Электро	Коммерческие (LCV)	-	-	25	43	63
	Легковые (РС)	295	588	2 288	3 049	14 370
	Пикап (Pick Up)	-	-	1	-	32
	Автобусы (BUS)	-	-	-	-	-
	Грузовые (HCV)	-	-	-	-	-
Электро-бензиновый	Коммерческие (LCV)	-	-	3	12	9
	Легковые (РС)	60	3 410	14 547	4 794	15 681
	Пикап (Pick Up)	-	1	2	143	317
	Автобусы (BUS)	-	-	-	-	-
	Грузовые (HCV)	-	1	1	-	-
Электро-дизельный	Коммерческие (LCV)	1	-	-	-	1
,	Легковые (РС)	2	1 000	2 573	1 075	4 999
	Пикап (Pick Up)	-	-	-	-	-
		358	5000	19789	9278	35959

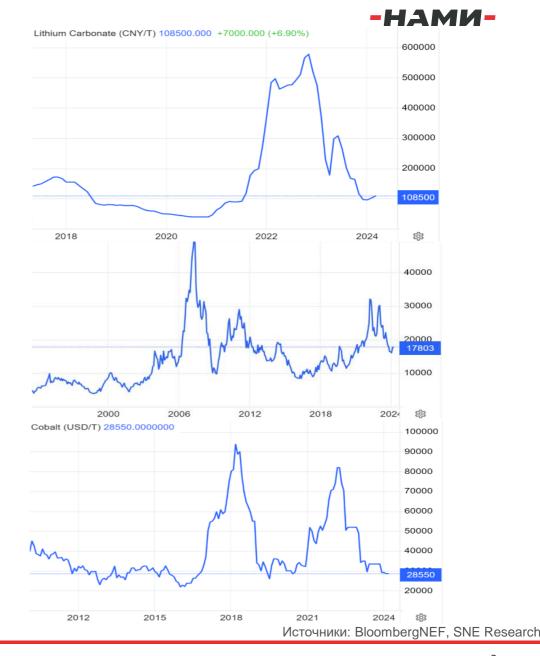
Источники: ИАС АвтоСпектр, Автостат

Основные производители литий-ионных аккумуляторов

Доля мирового рынка в 2023 году

Источники: SNE Research

Стоимость


Стоимость батарей и аккумуляторов

Средняя стоимость батареи в 2023 году:

139 \$/кВтч

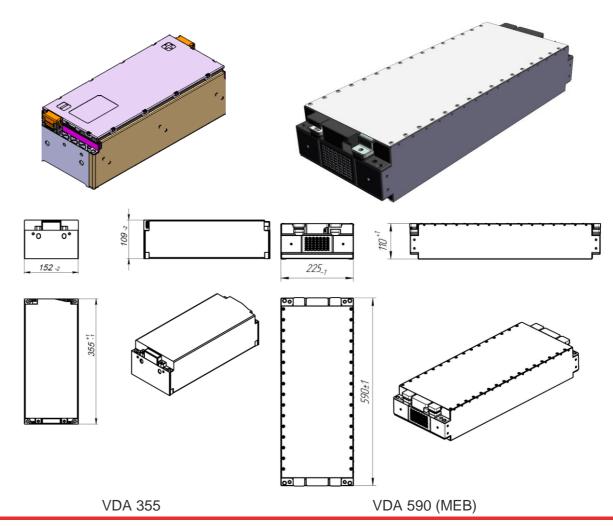
Стоимость аккумуляторов:

LFP	0.4-0.6 CNY/Втч (~55-83 \$/кВтч)
NMC	0.8-1.2 CNY/Втч (~110-166 \$/кВтч)

Основные технологии, применяемые в транспорте

Типы и виды аккумуляторов

• Форм-фактор


Цилиндрические	Призматические	Пакет (Pouch)
----------------	----------------	---------------

• Электрохимия

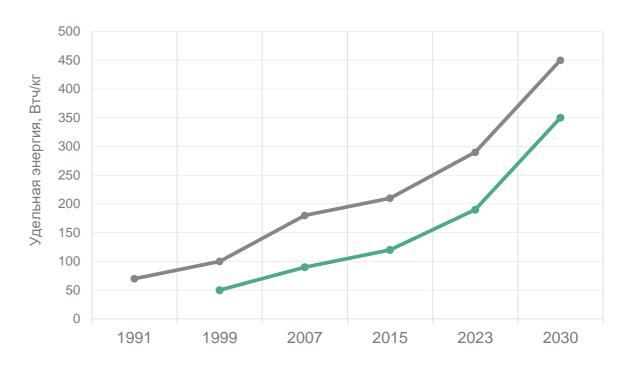
LFP	180-200 Втч/кг	>400 Втч/л
NMC	260-280 Втч/кг	>600 Втч/л

• Аккумуляторные модули

VDA 355	VDA 590 (MEB)
	\ /

Аккумуляторные модули 4s3p VDA 355

	CALB	Microvast	ENV	Farasis	SVOLT		
Внешний вид				O.			
Емкость, кВтч	2,55	2,31	2,35	2,31	2,21		
Емкость, Ач	174	152	159	156	153		
Удельные характеристики, Втч/кг	209	210	212	210	192,6		
Номинальное напряжение, В	14,68	14,84	14,8	14,8	14,8		
Разрядный ток, А (С)	174 (1C)	152 (1C)	159 (1C)	156 (1C)	153 (1C)		
Вес, кг	12,2	12,2	11	11,5	11,5		
Размеры габаритные, мм	355x151x108						
Размеры присоединительные, мм	340x133						



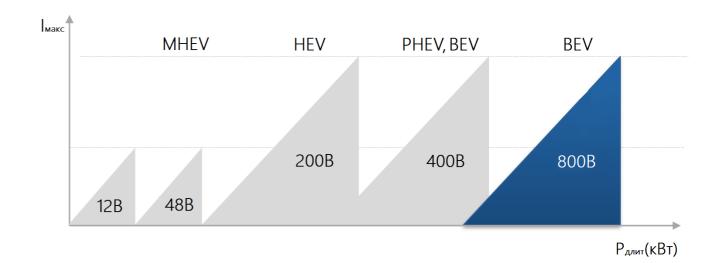
Характеристики высоковольтных батарей

Параметр	Jaguar i-pace	Kia Niro EV	Lexus RZ 450e	VW ID.4	Nio ES8	Tesla 3/Y LR	RIVIAN R1T	Porsche Taycan	Hummer EV	Lucid Air Dream	Nio ET9 (2025)
Энергоемкость, кВт·ч	94,2	64	71,4	82	72.8	82	142,7	93,4	200	119,8	120
Форм-фактор	пакет	пакет	призма	пакет	призма	цилиндр	цилиндр	пакет	пакет	цилиндр	цилиндр
Формула соединения	108s4p	98s3p	96s1p	96s3p	96s4p	107s4p	108s72p	198s2p	192s3p	220s30p	n/a
Номинальное напряжение, В	389	353	355,2	350,4	350	340	392	723	800	798,6	815
Удельная энергоемкость батареи, Вт·ч/кг	156	140	n/a	168	139	184	176	148	156	171	n/a
Вес батареи, кг	603	455	n/a	489	524.6	445	803.7	633	1278	700.6	n/a
Емкость аккумулятора, Ач	60	63,4	201	78	52	25,7	5,3	64,6	101,8	5	n/a
Удельная энергоемкость аккумулятора, Вт·ч/кг	267	255	148.7	258,6	224,7	268	272,9	264	266,5	261,2	292
Вес аккумулятора, кг	0,82	0,89	5	1,101	0,84	0,355	0,0705	0,89	1,303	0,0695	n/a
Отношение веса аккумуляторы/батарея, %	58	57	n/a	63,2	61,56	66.1	68,2	56,4	58,7	65.5	n/a

- Увеличение удельных характеристик аккумуляторов и батарей, переход на новые типы электрохимии
- Переход на технологию Cell-to-pack
- Переход на 48 В и 800 В архитектуру
- Быстрая замена батарей (Swap system)

Удельные характеристики литий-ионных аккумуляторов и батарей

- Увеличение удельных характеристик аккумуляторов и батарей
- > Переход на технологию Cell-to-pack
- Переход на 48 В и 800 В архитектуру
- Быстрая замена батарей (Swap system)

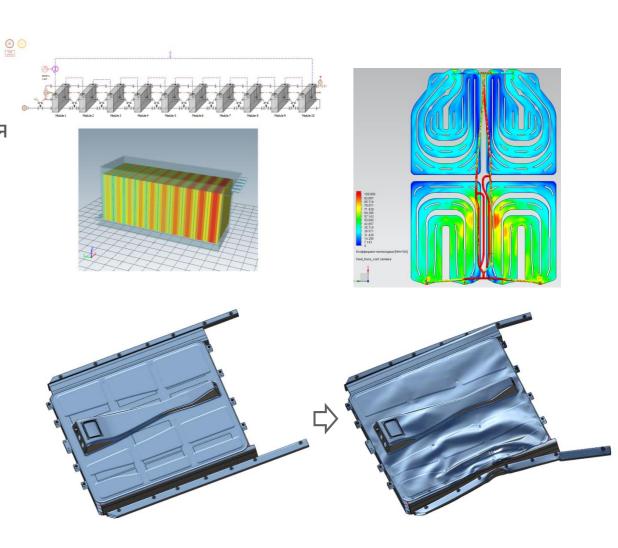


- Увеличение удельных характеристик аккумуляторов и батарей
- Переход на технологию Cell-to-pack
- Переход на 48 В и 800 В архитектуру
- Быстрая замена батарей (Swap system)

- Увеличение удельных характеристик аккумуляторов и батарей
- Переход на технологию Cell-to-pack
- Переход на 48 В и 800 В архитектуру
- > Быстрая замена батарей (Swap system)

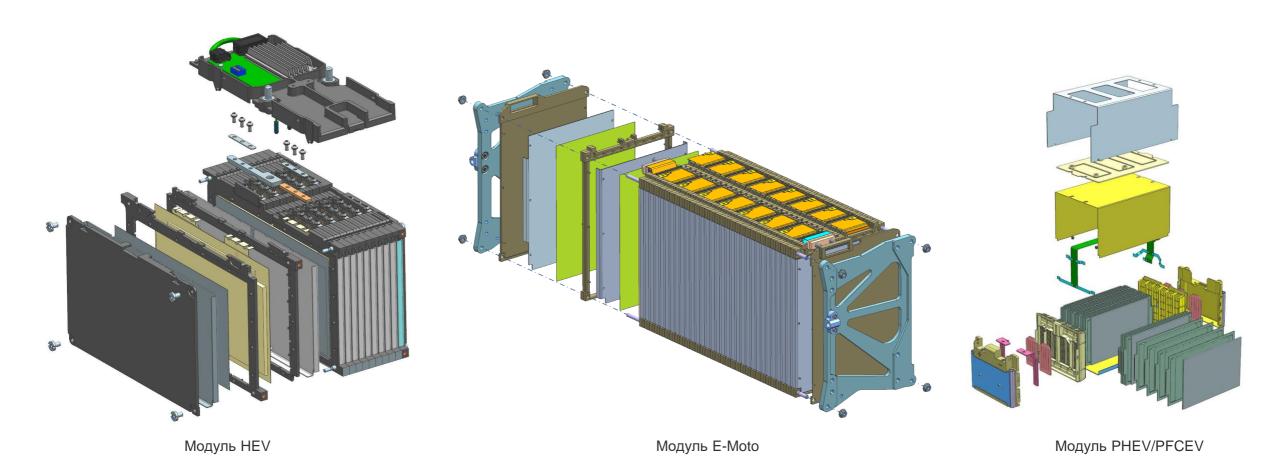
Батарея, совместимая со станциями быстрой замены

Станция быстрой замены батарей


Компетенции ФГУП НАМИ в разработке высоковольтных батарей

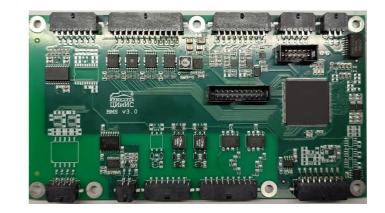
Расчеты и моделирование

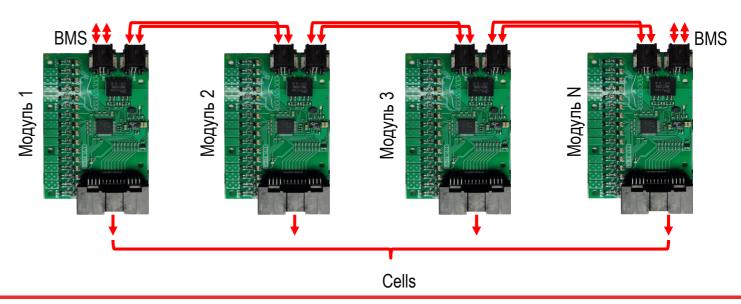
Виды проводимых работ


- Оценка эффективности системы термостатирования
- Термоменеджмент и энергомененджмент
- Моделирование аккумуляторов как электрохимических источников энергии
- Симуляция механических воздействий

Аккумуляторные модули

Модули разработанные ФГУП НАМИ



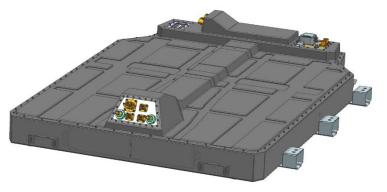


Система управления батареей

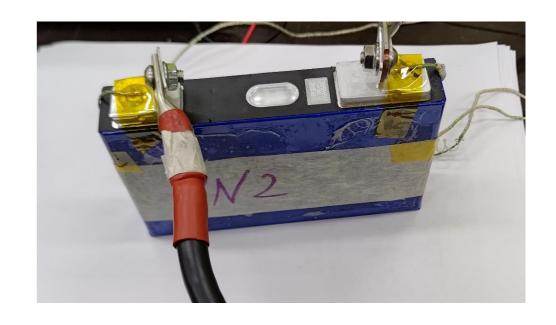
Платы управления, балансировки и контроля изоляции

- Санкционно-устойчивая компонентная база
- Работа с 400/800 В архитектурой
- Соответствие требованиям ГОСТ Р ИСО 26262
- Расчет SOC, SOH и SOP по мат. модели аккумулятора

Текущие и завершенные проекты

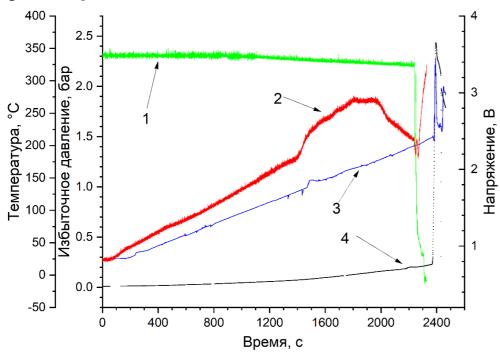

Разработка батарей

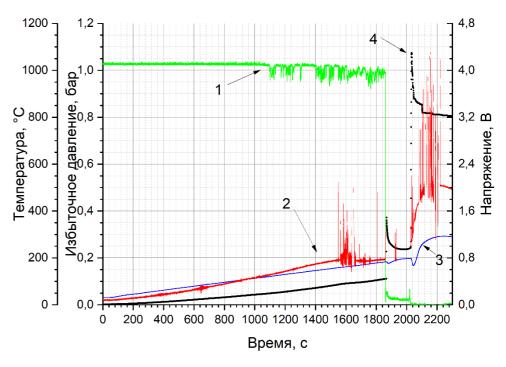
- Батарея HEV
- Батарея E-Moto
- Батарея PHEV/PFCEV
- Батарея BEV



Исследовательские работы

Виды проводимых работ


- Параметризация и тестирование аккумуляторов
- Ресурсные испытания и оценка деградации
- Тесты на оценку безопасности (Misuse Test)
- Исследования безопасности литий-ионных аккумуляторов
- Оценка эффективности материалов для пожаротушения


Исследовательские работы

Исследования безопасности литий-ионных аккумуляторов

Зависимости изменения температур, напряжения ЛИА LFP/С в мягком корпусе и давления в испытательной камере от времени.

На рисунке: 1 — напряжение ЛИА, 2 — температура на поверхности аккумулятора, 3 — температура НП, 4 — давление в испытательной камере.

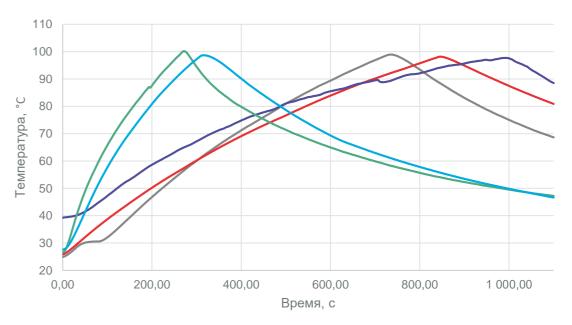
Зависимости изменения температур, напряжения ЛИА типа NMC/C и давления в испытательной камере от времени.

На рисунке: 1 – напряжение ЛИА, 2 – температура на поверхности аккумулятора, 3 – температура НП, 4 – давление в испытательной камере.

Исследовательские работы

Оценка эффективности материалов для пожаротушения

Образцы аккумуляторов и аккумуляторная сборка


Внешний вид сборки аккумуляторов после испытания

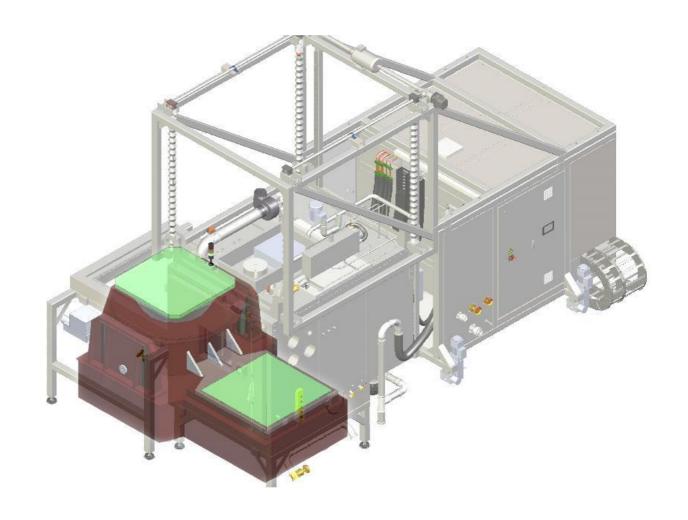
Оценка применяемых компонентов

Анализ контакторов

- Определение максимального допустимого тока разрыва цепи
- Определение установившийся температуры под нагрузкой
- Оценка токопотребления
- Оценка внутренней конструкции контакторов

Зависимости изменения температур при номинальном токе от времени для разных контакторов

Оценка применяемых компонентов



Испытательная база

Стенды и оборудование

- Испытательный комплекс
- Зарядно-разрядные стенды
- Стенды функционального тестирования
- HIL-стенды

Нормативная база

Нормативная база и сертификация

- Нормативная база и унификация
- Сертификация батарей
- Паспорт батареи

АССОЦИАЦИЯ РАЗВИТИЯ ТЕХНОЛОГИЙ СИСТЕМ НАКОПЛЕНИЯ ЭЛЕКТРОЭНЕРГИИ

CONSORTIUM PARTNERS

*under subcontract

ASSOCIATED PARTNERS

Источники: https://thebatterypass.eu/resources/

СПАСИБО ЗА ВНИМАНИЕ

nami.ru